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In the present paper Laplace Transform Technique has been applied to analyse the run-up 

flow of a conducting visco-elastic [Oldroyd (1958) type] liquid through an infinitely long uniform 

right circular cylinder under the influence of uniform magnetic field applied perpendicularly to the 

flow of the liquid. The motion is initially generated by constant pressure gradient along the axis of 

circular tube. When the flow is fully developed, the pressure gradient is suddenly withdrawn whereas 

the wall of the cylinder is impulsively started simultaneously. Expressions for velocity field, flow rate 

and the shear stress on the wall have been obtained. The result for Kuvshiniski visco-elastic, Rivlin-

Ericksen visco-elastic and ordinary viscous fluid flows are also deduced as the limiting cases. If the 

magnetic field is with-drawn, all corresponding results for flow of viscous and various types of visco-

elastic fluids can be determined.  

 

INTRODUCTION 

 In many configurations, in technology and in nature we continually encounter run-up 

flow of fluids between rigid boundaries. Due to their importance many researchers have 

investigated such flows for viscous and visco-elastic fluids such as Kazakia and Rivlin1, 

Rivlin3, Ramacharyulu and Raja4, Singh and Srivastava5, Singh6, studied the run-up flow of 

Oldroyd2 model visco-elastic liquid through porous medium in along the right circular 

cylinder, Nayak, Dash and Panda7 studied MHD flow of a visco-elastic fluid along vertical 

porous surface with comical reaction, Chaudry, Dhar and Dey8 have discussed visco-elastic 

MHD flow through a porous medium bounded by horizontal parallel plates moving in 

opposite direction in presence of heat and mass transfer,Tripathi9 studied unsteady MHD 

flow of a conducting visco-elastic liquid through porous medium between two finite co-axial 

right circular cylinders. 

 The object of this paper is to study the run-up flow of Oldroyd visco-elastic liquid 

through an infinitely long right circular cylinder with the application of uniform magnetic 

field applied perpendicularly to the direction of fluid with the help of Laplace transform. 
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Expressions for velocity field, flow rate and the shear stress on the circular wall are obtained. 

The results for Kuvshiniski, Rivlin-Ericksen visco-elastic liquids and ordinary viscous fluid 

flows are also deduced as the limiting cases. If magnetic field is withdrawn, all corresponding 

results for purely viscous fluid and various type of visco-elastic liquids can be determined. 

   FORMULATION OF THE PROBLEM 

 We consider the flow of an incompressible elastico-viscous [Oldroyd (1958) model] 

liquid for which the strain relation is given by 

Pik = −Pδik + Pk
i′

 

 Consider the flow of a visco-elastic liquid in a circular cylinder of radious a. 

Referring the problem to cylindrical polar coordinates (r, θ, z) we take the z-axis along the 

axis of the cylinder. It is assumed that Wr = Wθ = 0  and Wz = W(r, t). 

 With the above assumptions the equation of motion relevant to the problem is: 
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where ρ  is the density, ν  the kinematic viscosity, σ  the conductivity of fluid B0 is the 

electromagnetic induction. 

 At  t=0, a constant pressure gradient is impressed on the system, when the flow is 

fully developed, the pressure gradient is suddenly withdrawn and at the same time the wall 

starts moving with a constant velocity W0 parallel to itself. 

 Introducing the following non-dimensional quantities: 
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in equation (1) we get after dropping the stars: 
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                                                                                             −M2 (1 + λ1
∂

∂t
) W          … (2)    

where  M = aB0√
σ

μ
     (Hartmann number)  

 

INITIAL STATE FOR FLOW 

               The steady state flow when −
∂p

∂z
= C  (constant) is given by the   

momentum equation 

  

                                              0 = C + (
∂2W

∂r2
+

1

r

∂W

∂r
) − M2W                 … (3) 

together with the boundary conditions  

                                       W = 0 ,                    at   r = 1                                                … (4) 

                                       W = finite,           at   r = 0 

 The solution of (3) with the help of (4) is  

                                     W = CK [1 −
I0(Mr)

I0(M)
] = f(r)  (say)                                  … (5) 

where  I0(r) is the modified Bessel’s function of order zero. 

RUN-UP FLOW 

 The constant pressure gradient is suddenly withdrawn and at the same time the wall 

starts moving with a constant velocity W0. 

Now the velocity field satisfied the equation 
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The initial and boundary conditions are: 

 t = 0     ,     W = f(r)                                                                                        … (7) 

                                 W = W0,                      at     r = 1 

           t > 0     ,                                                                                                                 … (8) 

                                 W = finite,                at    r = 0 

Applying Laplace transform to equation (6) we get, 
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where                     λ2 =
(1 + λ1s)(s + M2)

(1 + μ1s)
   

Together with the reduced boundary conditions: 
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s
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           for   t > 0   ,                                                                                                    … (10) 

                                 W̅ = finite ,          at    r = 0 

where  W̅(s, t) = ∫ W(r, t)e−stdt
∞

0
 

Solution of equation (9) subject to conditions (10) is : 
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The inverse Laplace transform corresponding to equation (11), we get the velocity of visco-

elastic liquid is 
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Where Sn
i  are the roots of the quadratic equation 
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2                                   … (13) 

αn are the successive roots of the equation J0(α) = 0 and J0, J1 are the Bessel’s function of 

order zero and one respectively. The flow rate is given by 
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The shear stress on the wall is given by 
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 This is the flow with the boundary wall moving the velocity W0and in the absence of 

pressure gradient. 

STEADY CASE 

 When t → ∞ from equations (12), (14) and (15), we have  

 W(r, ∞) = W0

I0(Mr)

I0(M)
                                                                                               … (16) 

Q = 2πW0M
I1(Mr)

I0(M)
                                                                                                   … (17) 

τ = μMW0

I1(Mr)

I0(M)
                                                                                                       … (18) 

PARTICULAR CASE 

Case-I : If μ1 → 0,  all corresponding result for Kuvshiniski type visco-elastic  

               Liquid can be determined.                 

Case-II : If λ1 → 0,  all corresponding result for Rivlin-Ericksen type visco-elastic     

               Liquid can be obtained. 
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